summarylogtreecommitdiffstats
path: root/example1.f
blob: ce1b1a6fa6eb31357e5ba0011328b680a3cbc694 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
      PROGRAM EXAMPLE1
*
*     Example Program solving Ax=b via ScaLAPACK routine PDGESV
*
*     .. Parameters ..
      INTEGER            DLEN_, IA, JA, IB, JB, M, N, MB, NB, RSRC,
     $                   CSRC, MXLLDA, MXLLDB, NRHS, NBRHS, NOUT,
     $                   MXLOCR, MXLOCC, MXRHSC
      PARAMETER          ( DLEN_ = 9, IA = 1, JA = 1, IB = 1, JB = 1,
     $                   M = 9, N = 9, MB = 2, NB = 2, RSRC = 0,
     $                   CSRC = 0, MXLLDA = 5, MXLLDB = 5, NRHS = 1,
     $                   NBRHS = 1, NOUT = 6, MXLOCR = 5, MXLOCC = 4,
     $                   MXRHSC = 1 )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            ICTXT, INFO, MYCOL, MYROW, NPCOL, NPROW
      DOUBLE PRECISION   ANORM, BNORM, EPS, RESID, XNORM
*     ..
*     .. Local Arrays ..
      INTEGER            DESCA( DLEN_ ), DESCB( DLEN_ ),
     $                   IPIV( MXLOCR+NB )
      DOUBLE PRECISION   A( MXLLDA, MXLOCC ), A0( MXLLDA, MXLOCC ),
     $                   B( MXLLDB, MXRHSC ), B0( MXLLDB, MXRHSC ),
     $                   WORK( MXLOCR )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   PDLAMCH, PDLANGE
      EXTERNAL           PDLAMCH, PDLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_EXIT, BLACS_GRIDEXIT, BLACS_GRIDINFO,
     $                   DESCINIT, MATINIT, PDGEMM, PDGESV, PDLACPY,
     $                   SL_INIT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE
*     ..
*     .. Data statements ..
      DATA               NPROW / 2 / , NPCOL / 3 /
*     ..
*     .. Executable Statements ..
*
*     INITIALIZE THE PROCESS GRID
*
      CALL SL_INIT( ICTXT, NPROW, NPCOL )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     If I'm not in the process grid, go to the end of the program
*
      IF( MYROW.EQ.-1 )
     $   GO TO 10
*
*     DISTRIBUTE THE MATRIX ON THE PROCESS GRID
*     Initialize the array descriptors for the matrices A and B
*
      CALL DESCINIT( DESCA, M, N, MB, NB, RSRC, CSRC, ICTXT, MXLLDA,
     $               INFO )
      CALL DESCINIT( DESCB, N, NRHS, NB, NBRHS, RSRC, CSRC, ICTXT,
     $               MXLLDB, INFO )
*
*     Generate matrices A and B and distribute to the process grid
*
      CALL MATINIT( A, DESCA, B, DESCB )
*
*     Make a copy of A and B for checking purposes
*
      CALL PDLACPY( 'All', N, N, A, 1, 1, DESCA, A0, 1, 1, DESCA )
      CALL PDLACPY( 'All', N, NRHS, B, 1, 1, DESCB, B0, 1, 1, DESCB )
*
*     CALL THE SCALAPACK ROUTINE
*     Solve the linear system A * X = B
*
      CALL PDGESV( N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB,
     $             INFO )
*
      IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
         WRITE( NOUT, FMT = 9999 )
         WRITE( NOUT, FMT = 9998 )M, N, NB
         WRITE( NOUT, FMT = 9997 )NPROW*NPCOL, NPROW, NPCOL
         WRITE( NOUT, FMT = 9996 )INFO
      END IF
*
*     Compute residual ||A * X  - B|| / ( ||X|| * ||A|| * eps * N )
*
      EPS = PDLAMCH( ICTXT, 'Epsilon' )
      ANORM = PDLANGE( 'I', N, N, A, 1, 1, DESCA, WORK )
      BNORM = PDLANGE( 'I', N, NRHS, B, 1, 1, DESCB, WORK )
      CALL PDGEMM( 'N', 'N', N, NRHS, N, ONE, A0, 1, 1, DESCA, B, 1, 1,
     $             DESCB, -ONE, B0, 1, 1, DESCB )
      XNORM = PDLANGE( 'I', N, NRHS, B0, 1, 1, DESCB, WORK )
      RESID = XNORM / ( ANORM*BNORM*EPS*DBLE( N ) )
*
      IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
         IF( RESID.LT.10.0D+0 ) THEN
            WRITE( NOUT, FMT = 9995 )
            WRITE( NOUT, FMT = 9993 )RESID
         ELSE
            WRITE( NOUT, FMT = 9994 )
            WRITE( NOUT, FMT = 9993 )RESID
         END IF
      END IF
*
*     RELEASE THE PROCESS GRID
*     Free the BLACS context
*
      CALL BLACS_GRIDEXIT( ICTXT )
   10 CONTINUE
*
*     Exit the BLACS
*
      CALL BLACS_EXIT( 0 )
*
 9999 FORMAT( / 'ScaLAPACK Example Program #1 -- May 1, 1997' )
 9998 FORMAT( / 'Solving Ax=b where A is a ', I3, ' by ', I3,
     $      ' matrix with a block size of ', I3 )
 9997 FORMAT( 'Running on ', I3, ' processes, where the process grid',
     $      ' is ', I3, ' by ', I3 )
 9996 FORMAT( / 'INFO code returned by PDGESV = ', I3 )
 9995 FORMAT( /
     $   'According to the normalized residual the solution is correct.'
     $       )
 9994 FORMAT( /
     $ 'According to the normalized residual the solution is incorrect.'
     $       )
 9993 FORMAT( / '||A*x - b|| / ( ||x||*||A||*eps*N ) = ', 1P, E16.8 )
      STOP
      END
      SUBROUTINE MATINIT( AA, DESCA, B, DESCB )
*
*     MATINIT generates and distributes matrices A and B (depicted in
*     Figures 2.5 and 2.6) to a 2 x 3 process grid
*
*     .. Array Arguments ..
      INTEGER            DESCA( * ), DESCB( * )
      DOUBLE PRECISION   AA( * ), B( * )
*     ..
*     .. Parameters ..
      INTEGER            CTXT_, LLD_
      PARAMETER          ( CTXT_ = 2, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      INTEGER            ICTXT, MXLLDA, MYCOL, MYROW, NPCOL, NPROW
      DOUBLE PRECISION   A, C, K, L, P, S
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO
*     ..
*     .. Executable Statements ..
*
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
      S = 19.0D0
      C = 3.0D0
      A = 1.0D0
      L = 12.0D0
      P = 16.0D0
      K = 11.0D0
*
      MXLLDA = DESCA( LLD_ )
*
      IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
         AA( 1 ) = S
         AA( 2 ) = -S
         AA( 3 ) = -S
         AA( 4 ) = -S
         AA( 5 ) = -S
         AA( 1+MXLLDA ) = C
         AA( 2+MXLLDA ) = C
         AA( 3+MXLLDA ) = -C
         AA( 4+MXLLDA ) = -C
         AA( 5+MXLLDA ) = -C
         AA( 1+2*MXLLDA ) = A
         AA( 2+2*MXLLDA ) = A
         AA( 3+2*MXLLDA ) = A
         AA( 4+2*MXLLDA ) = A
         AA( 5+2*MXLLDA ) = -A
         AA( 1+3*MXLLDA ) = C
         AA( 2+3*MXLLDA ) = C
         AA( 3+3*MXLLDA ) = C
         AA( 4+3*MXLLDA ) = C
         AA( 5+3*MXLLDA ) = -C
         B( 1 ) = 0.0D0
         B( 2 ) = 0.0D0
         B( 3 ) = 0.0D0
         B( 4 ) = 0.0D0
         B( 5 ) = 0.0D0
      ELSE IF( MYROW.EQ.0 .AND. MYCOL.EQ.1 ) THEN
         AA( 1 ) = A
         AA( 2 ) = A
         AA( 3 ) = -A
         AA( 4 ) = -A
         AA( 5 ) = -A
         AA( 1+MXLLDA ) = L
         AA( 2+MXLLDA ) = L
         AA( 3+MXLLDA ) = -L
         AA( 4+MXLLDA ) = -L
         AA( 5+MXLLDA ) = -L
         AA( 1+2*MXLLDA ) = K
         AA( 2+2*MXLLDA ) = K
         AA( 3+2*MXLLDA ) = K
         AA( 4+2*MXLLDA ) = K
         AA( 5+2*MXLLDA ) = K
      ELSE IF( MYROW.EQ.0 .AND. MYCOL.EQ.2 ) THEN
         AA( 1 ) = A
         AA( 2 ) = A
         AA( 3 ) = A
         AA( 4 ) = -A
         AA( 5 ) = -A
         AA( 1+MXLLDA ) = P
         AA( 2+MXLLDA ) = P
         AA( 3+MXLLDA ) = P
         AA( 4+MXLLDA ) = P
         AA( 5+MXLLDA ) = -P
      ELSE IF( MYROW.EQ.1 .AND. MYCOL.EQ.0 ) THEN
         AA( 1 ) = -S
         AA( 2 ) = -S
         AA( 3 ) = -S
         AA( 4 ) = -S
         AA( 1+MXLLDA ) = -C
         AA( 2+MXLLDA ) = -C
         AA( 3+MXLLDA ) = -C
         AA( 4+MXLLDA ) = C
         AA( 1+2*MXLLDA ) = A
         AA( 2+2*MXLLDA ) = A
         AA( 3+2*MXLLDA ) = A
         AA( 4+2*MXLLDA ) = -A
         AA( 1+3*MXLLDA ) = C
         AA( 2+3*MXLLDA ) = C
         AA( 3+3*MXLLDA ) = C
         AA( 4+3*MXLLDA ) = C
         B( 1 ) = 1.0D0
         B( 2 ) = 0.0D0
         B( 3 ) = 0.0D0
         B( 4 ) = 0.0D0
      ELSE IF( MYROW.EQ.1 .AND. MYCOL.EQ.1 ) THEN
         AA( 1 ) = A
         AA( 2 ) = -A
         AA( 3 ) = -A
         AA( 4 ) = -A
         AA( 1+MXLLDA ) = L
         AA( 2+MXLLDA ) = L
         AA( 3+MXLLDA ) = -L
         AA( 4+MXLLDA ) = -L
         AA( 1+2*MXLLDA ) = K
         AA( 2+2*MXLLDA ) = K
         AA( 3+2*MXLLDA ) = K
         AA( 4+2*MXLLDA ) = K
      ELSE IF( MYROW.EQ.1 .AND. MYCOL.EQ.2 ) THEN
         AA( 1 ) = A
         AA( 2 ) = A
         AA( 3 ) = -A
         AA( 4 ) = -A
         AA( 1+MXLLDA ) = P
         AA( 2+MXLLDA ) = P
         AA( 3+MXLLDA ) = -P
         AA( 4+MXLLDA ) = -P
      END IF
      RETURN
      END
      SUBROUTINE SL_INIT( ICTXT, NPROW, NPCOL )
*
*     .. Scalar Arguments ..
      INTEGER            ICTXT, NPCOL, NPROW
*     ..
*
*  Purpose
*  =======
*
*  SL_INIT initializes an NPROW x NPCOL process grid using a row-major
*  ordering  of  the  processes. This routine retrieves a default system
*  context  which  will  include all available processes. In addition it
*  spawns the processes if needed.
*
*  Arguments
*  =========
*
*  ICTXT   (global output) INTEGER
*          ICTXT specifies the BLACS context handle identifying the
*          created process grid.  The context itself is global.
*
*  NPROW   (global input) INTEGER
*          NPROW specifies the number of process rows in the grid
*          to be created.
*
*  NPCOL   (global input) INTEGER
*          NPCOL specifies the number of process columns in the grid
*          to be created.
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            IAM, NPROCS
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GET, BLACS_GRIDINIT, BLACS_PINFO,
     $                   BLACS_SETUP
*     ..
*     .. Executable Statements ..
*
*     Get starting information
*
      CALL BLACS_PINFO( IAM, NPROCS )
*
*     If machine needs additional set up, do it now
*
      IF( NPROCS.LT.1 ) THEN
         IF( IAM.EQ.0 )
     $      NPROCS = NPROW*NPCOL
         CALL BLACS_SETUP( IAM, NPROCS )
      END IF
*
*     Define process grid
*
      CALL BLACS_GET( -1, 0, ICTXT )
      CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )
*
      RETURN
*
*     End of SL_INIT
*
      END